Exercices 3

Exercice 3.1

Une particule est confinée dans une boîte linéaire de longueur L entourée de parois de potentiel infini. L'état fondamental de ce système est décrit par la fonction d'onde suivante :

$$\Psi_1(x) = \sqrt{\frac{2}{L}} \times \sin\left(\frac{\pi x}{L}\right)$$

- a) Quelle est la probabilité de trouver la particule à une position x donnée ?
- b) A quelle position se trouve la densité de probabilité maximale ?
- c) Quelle est la probabilité totale de trouver la particule dans la boîte ?
- d) Si L = 10 nm, quelle est la probabilité que la particule soit comprise entre 4:95 et 5:05 nm?

Note : L'exercice 3.1 sera résolu au tableau lors de la séance d'exercices de ce vendredi 27 septembre 2024.

Exercice 3.2

L'énergie totale de la particule dans la boîte peut être calculée comme suit

$$E_{\text{tot}} = E_{\text{cin}} + E_{\text{pot}},$$

où l'énergie cinétique est donnée par

$$E_{\rm cin} = \frac{1}{2}mv^2.$$

Écrivez une expression pour l'énergie totale de la particule dans la boîte, en utilisant la relation de Broglie $(p = mv = \frac{h}{\lambda})$ et le fait que la longueur d'onde doit satisfaire aux conditions suivantes $\lambda = \frac{2L}{n}$. Quelle est la principale implication de cette équation ?

Exercise 3.3

Vrai ou faux?

- a) L'énergie de l'état fondamental d'une particule dans une boîte (PDB) est zéro.
- b) Les niveaux d'énergie de la PDB sont équidistants.
- c) Augmenter l'énergie du PDB à l'état stable équivaut à augmenter le nombre de nœuds dans la fonction d'onde.

- d) Toutes les solutions de l'équation de Schrödinger indépendante du temps pour le PDB sont des fonctions d'onde stationnaires autorisées.
- e) La transition du PDB qui absorbe le photon de plus grande longueur d'onde se fait du niveau n = 1 au niveau n = 2.

Exercise 3.4

Le concept de quantification de l'énergie est à la base de la mécanique quantique. Dans les systèmes atomiques, les électrons ne peuvent occuper que des niveaux d'énergie spécifiques et quantifiés. Toutefois, lorsqu'un photon dont l'énergie est supérieure à la différence entre deux niveaux d'énergie interagit avec un atome, l'électron peut passer à un niveau d'énergie supérieur et l'énergie excédentaire devient l'énergie cinétique de l'électron.

Étant donné que : Les niveaux d'énergie de l'atome d'hydrogène sont décrits par la formule :

$$E_n = -\frac{13.6 \ eV}{n^2}$$

- a) Calculer l'énergie des deux premiers niveaux d'énergie (n=1 et n=2) de l'atome d'hydrogène.
- b) Si l'électron de l'atome d'hydrogène absorbe un photon d'une énergie de 12 eV alors qu'il se trouve dans l'état fondamental (n=1), à quel niveau d'énergie, le cas échéant, l'électron passera-t-il ? Calculez l'énergie cinétique acquise par l'électron en raison de l'énergie excédentaire du photon.
- c) Sur la base de vos résultats, discutez des implications pour les systèmes atomiques lorsqu'ils interagissent avec des photons de haute énergie.